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We propose a novel, accelerated algorithm for the approximate stochastic simulation of
biochemical systems with delays. The present work extends existing accelerated algo-
rithms by distributing, in a time adaptive fashion, the delayed reactions so as to minimize
the computational effort while preserving their accuracy. The accuracy of the present algo-
rithm is assessed by comparing its results to those of the corresponding delay differential
equations for a representative biochemical system. In addition, the fluctuations produced
from the present algorithm are comparable to those from an exact stochastic simulation
with delays. The algorithm is used to simulate biochemical systems that model oscillatory
gene expression. The results indicate that the present algorithm is competitive with exist-
ing works for several benchmark problems while it is orders of magnitude faster for certain
systems of biochemical reactions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Several reactions in eukaryotic cells are not instantaneous, but rather their reactants are subject to transcription, process-
ing, and synthesis before they can react with other chemical species [20,19]. These biochemical processes can be modeled via
a system of reactions with delays. Delayed reactions can also be used as models of spatially dependent stochastic processes
[9] when proteins may need to diffuse to a distant compartment in the cell in order to react with other proteins.

These reactions can be formulated as a continuous-time Markov process with a discrete set of states that can be expressed
by the so-called Master Equation (ME) [15,11]. Exact realizations of the ME can be obtained via the Stochastic Simulation Algo-
rithm [5,10,12] (SSA). The connections between SSA and Molecular Dynamics, as well as the classical Langevin, Fokker–
Planck, and reaction-rate equations, have been recently reviewed in [14]. The SSA is exact since it independently simulates
all reaction events but it can be computationally expensive for large systems.

In order to accelerate the SSA, several approximate algorithms have been proposed. These algorithms accelerate the SSA
by either prescribing a larger time-step [13,22,7,9,8] or the number of reactions per time-step [2]. Recently, there has been
interest in extending the SSA to incorporate delays. Delays in the stochastic process render it, by definition, non-Markovian,
and suitable modifications to the SSA are necessary in order to produce the correct dynamics [6,3,1]. Cai [6] and Anderson [1]
have proposed exact, delayed SSAs and, additionally, Leier et al. [16] have developed a delayed, accelerated, approximate, SSA
(DAA-SSA).

In this paper, a time-adaptive generalization of DAA-SSA is proposed (D-leaping). D-leaping is shown to converge to the
Delay Differential Equation (DDE) and preserve the correct statistical fluctuations. Furthermore, the algorithm is adaptive in
time, and is shown to be, for certain chemical reactions, orders of magnitude faster than the algorithm presented in [16]. The
D-leaping algorithm can be combined with R-Leaping [2] and s-Leaping [13] as described in this work.
. All rights reserved.
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This paper is organized as follows: Section 2 discusses continuum chemical kinetics and defines the reaction-rate and de-
lay differential equations. Section 3 summarizes stochastic chemical kinetics as well as algorithms for incorporating delays.
Section 4 introduces D-leaping and Section 5 presents numerical results and comparisons with other work. The work is sum-
marized in Section 6.

2. Continuum chemical kinetics and delay differential equations

Continuum models of chemical kinetics systems with large numbers of molecules describe the evolution of concentra-
tions with respect to time, instead of the evolution of discrete species. The concentration is defined as viðtÞ :¼ XiðtÞ=X, where
XiðtÞ is the number of molecules of species i in the volume X at time t. Under the assumption of a well stirred chemical sys-
tem in thermal equilibrium, the evolution of concentrations can be expressed as
dviðtÞ
dt

¼ fiðt;v1ðtÞ; . . . ;vNðtÞÞ; i ¼ 1; . . . ;N; ð1Þ
where the functions fi depend on the reactants of the chemical reaction, and N is the number of different species.
When the functions fi depend not only on the current concentrations of the system, but also on concentrations in previous

times, the time-delay differential equation for viðtÞ can be written as
dviðtÞ
dt

¼ fiðt;v1ðtÞ; v1ðt � sd;1Þ; . . . ;vNðtÞ; ð2Þ

vNðt � sd;NÞÞ; sd;i > 0; i ¼ 1; . . . ;N; ð3Þ
where sd;i; for i ¼ 1; . . . ;N are the delay times that, without loss of generality, are assumed to be constant throughout this
paper.

3. Chemical kinetics and stochastic simulation algorithms

3.1. SSA and accelerated, approximate algorithms

We consider a system of N species that react through M reaction channels. The number of molecules of species i at time t
is a random variable XðtÞ ¼ ðX1ðtÞ; . . . ;XiðtÞ; . . . ;XNðtÞÞ, as random molecular collisions give rise to chemical transformations
described by the reaction channels fR1; . . . ;RMg. A propensity function ajðXÞ and state-change vector mj ¼ ðm1j; . . . ; mNjÞ specify
the dynamics of a reaction channel Rj for j ¼ 1; . . . ;M. The quantity ajðXÞs represents the probability that a reaction of type Rj

occurs in the infinitesimal time interval ½t; t þ sÞ and mij denotes the change induced on the number of molecule i. The fol-
lowing vector is defined
H :¼ ða1; a2; . . . ; aM; �Þ; ð4Þ

where � is an error control parameter such that 0 6 �� 1 [7]. All SSAs sample a time-step and the number of reactions that
occurred within that time-step. Exact and accelerated SSAs can be expressed as:
s � fðHÞ; ð5Þ
kj � WðH; sÞ; ð6Þ

Xðt þ sÞ ¼ XðtÞ þ
XM

j¼1

kjmj; ð7Þ
where s is the time-step, kj are the number of reactions of type j, and the distributions f and W vary depending on the algo-
rithm used. In s� Leaping [13] the time-step is prescribed and the total number of reactions is a random variable; f is a Delta
distribution and W is a Poisson distribution. Conversely in the case of R-Leaping [2], the total number of reactions per time-
step is prescribed and the time-step is sampled from a probability distribution. More specifically, f is a Gamma distribution
and W is a Multinomial distribution. The algorithms proceed by iterating through Eqs. (5)–(7) until the predefined final time
is reached.

3.2. Accelerated, approximate SSA for delayed reactions

In consuming delayed reactions the reactants are instantaneously annihilated, but the products do not manifest, in reac-
tive form, until a constant delay time sd after the initial reaction. In turn for non-consuming reactions the reactants are not
annihilated until the products appear [3].

Leier et al. [16] were the first to propose an accelerated scheme for SSA of delayed reactions. Their method extends the
generic formulation presented in Section 3.1 by introducing a check, at every iteration, for delays. We let Rd denote a delayed
reaction, and kd the corresponding number of reactions executed at a given time-step. The algorithm proceeds by maintain-
ing a queue structure of the delayed reactions (Fig. 1(A)). The queue is checked at every iteration to determine whether the
products of the delayed reactions ought be manifested. If this is indeed the case, the products are created and the reaction is
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Fig. 1. (A) Comparison of approximate algorithms for the treatment of delayed reactions, time on the x-axis and their corresponding queues on the right.
DAA-SSA in [16], top: the delayed reactions are uniformly distributed in the interval ½ta þ sd; ta þ sd þ saÞ; ri � Uð0;1Þ, for i ¼ 1; . . . ; kd . D-leaping, bottom:
the delayed reaction is stored with the number of executions, kd ¼ 5 (in this example), as well as the earliest possible execution time for the delayed
reaction, qd;a ¼ ta þ sd , and the time-step which generated the reaction, spand ¼ sa. (B) Perspective when the delayed reaction ought to be executed in the
current time-step s. If ððt þ s� qd;aÞ=spandÞ < 1, then a partial number of the kd delayed reactions are executed, specifically k̂d � Bðkd ; ðt þ s� qd;aÞ=spandÞ.
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removed from the queue. Reactions are added to the queue as a result of Eq. (6), where kd reactions are placed on the queue,
which have uniformly distributed execution times in the interval ½ta þ sd; ta þ sd þ saÞ, where ta is the current time and sa

denotes the time-step (Fig. 1(A)).

4. D-leaping

The error in an accelerated stochastic simulation algorithm is C1�þ C2n�1=2, where C1;C2 are constants, and n is the num-
ber of samples. The terms represent the time integration and statistical errors, respectively. The algorithm presented in [16]
does not treat delayed reactions in an accelerated fashion since they are queued as individual events. The reason for doing so
is that we have no a priori knowledge of the time-step in the future, i.e. whether the time-step when the delayed reaction is
to be executed is on the same order of magnitude as the current time-step. If the time-step, at a later point, is substantially
smaller than that used when the delayed reaction was queued, the simulation of a smaller time-step, which possibly exe-
cutes single delayed reactions, would be necessary to preserve Oð�Þ for the time integration error.

Therefore, single-reaction resolution would be necessary if the current time-step is smaller than that used to queue the
delayed reaction. Here we propose a time-adaptive algorithm (D-leaping) which achieves singe-reaction resolution when
necessary. The algorithm does not produce an error additional to the errors made by an accelerated stochastic simulation
algorithm. Its computational savings are obtained by not sampling a uniform distribution for every delayed reaction.
Therefore large computational savings can be procured when a substantial number of delayed reactions are queued over
a time-step, i.e. when the number of molecules is large or when �, the error parameter in an accelerated stochastic simula-
tion algorithm, is large.

The time and time-step ðta; saÞ at which a delayed reaction would be queued is denoted here with a subscript a, whereas
no subscript indicates the time and time-step ðt; sÞ at which a delayed reaction ought to be executed. Rather than queueing
kd delayed reactions, D-leaping queues a reaction that ought to be executed kd times, as well as the first possible execution
time for the delayed reaction, qd;a ¼ ta þ sd, and the time-step, here called the span, which generated the reaction, spand ¼ sa

(Fig. 1(A)). In other words, qd;a is the earliest possible execution time and qd;a þ spand is the last possible execution time of the
kd delayed reactions.

Once the earliest possible execution time of a set of kd delayed reactions is in the interval of the current time-step of the
simulation, namely qd;a 2 ½t; t þ sÞ, some of the kd reactions may be executed. The essence of the D-leaping algorithm is that
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only a partial number of the kd reactions will be executed if the current timestep does not encapsulate the execution times of
all kd reactions, i.e. the span of the delayed reactions. If however the current time-step does indeed encapsulate the execution
times, all of kd reactions will be executed at once. The partial number of executions for the former case can be determined by
considering a partitioning of the time domain.

The kd reactions in spand follow the distribution:
kd � Pðad;aspandÞ; ð8Þ
where ad;a was the propensity of the delayed reaction at time ta and PðkÞ is the Poisson distribution with parameter k. If the
span is partitioned into two arbitrary subintervals denoted by c1 and c2 such that c1 þ c2 ¼ spand, it follows that the number
of reactions in each subinterval, denoted by k̂ci

, i ¼ 1;2 is
k̂ci
� Pðad;aciÞ for i ¼ 1;2 such that k̂c1

þ k̂c2
¼ kd: ð9Þ
It can be shown that the number of reactions in the first subinterval, namely k̂c1
, is
k̂c1
� B kd;

c1

spand

� �
; ð10Þ
where BðN; pÞ represents a Binomial distribution of N trials with probability p. The conditional distribution of k̂c2
given k̂c1

reduces to
k̂c2
� B kd � k̂c1

;
c2

spand � c1

� �
� B kd � k̂c1

;
c2

c2

� �
) k̂c2

¼ kd � k̂c1
: ð11Þ
The subinterval c1 contains the delayed reactions which will be executed in the current time-step and is defined as
minðt þ s� qd;a; spandÞ (Fig. 1(B)). c2 represents the remaining time in which the delayed reactions can be executed. The
queued event representing c2 has the updated parameters spand ¼ spand � ðt þ s� qd;aÞ, qd;a ¼ t þ s, and kd ¼ kd � k̂c1

. We
note that the next time-step can subject c2 to further partitioning.

Specifically, two cases need to be considered in the algorithm:
Case 1, encapsulated. The time-step covers all possible execution times for all of the kd reactions, namely

ððt þ s� qd;aÞ=spandÞP 1. The reactions do not need to be partitioned and can simply be executed all at once.
Case 2, not encapsulated. If ððt þ s� qd;aÞ=spandÞ < 1, then the portion of kd reactions that fall in the interval ½qd;a; t þ sÞwill

be executed (Fig. 1(B)). Any unexecuted reactions among the potential kd reactions will remain on the queue.
The reactions are separated into disjoint sets of delayed and non-delayed reactions, which are denoted by the indices d

and j, respectively. The method can be expressed by the following pseudocode:

Algorithm 1.
1:
 while t < tfinal do

2:
 s � fðHÞ

3:
 Xðt þ sÞ ¼ XðtÞ

4:
 for all d such that qd;a 2 ½t; t þ sÞ do� �

5:
 k̂d � B kd;

minðtþs�qd;a ;spandÞ
spand
6:
 spand ¼ spand � ðt þ s� qd;aÞ

7:
 kd ¼ kd � k̂d
8:
 qd;a ¼ t þ s

9:
 if Rd ¼¼ consuming thenP

10:
 Xðt þ sÞ ¼ Xðt þ sÞ þ dk̂dm

products
d

11:
 else P

12:
 Xðt þ sÞ ¼ Xðt þ sÞ þ dk̂dmd
13:
 end if

14:
 if kd ¼¼ 0 then

15:
 Queue:removeð½Rd; qd;a; kd; spand�Þ

16:
 end if

17:
 end for

18:
 kj

S
d � WðH; sÞ
19:
 for all d such that kd – 0 do

20:
 Queue:insertð½Rd; qd;a ¼ t þ sd; kd; spand ¼ s�Þ

21:
 end for P

22:
 Xðt þ sÞ ¼ Xðt þ sÞ þ jkjmj
23:
 for all d such that Rd ¼¼ consuming doP

24:
 Xðt þ sÞ ¼ Xðt þ sÞ þ dkdm

reactants
d

25:
 end for

26:
 t ¼ t þ s

27:
 end while



where mreactants
d and m

products
d denote the stoichiometric changes for the reactants and products of delayed reaction d,

respectively.
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5. Numerical results

5.1. Hes1 biochemical model

Monk [20] has shown that the oscillatory expression of mRNA and protein sequences can be the result of a feedback inhi-
bition model involving delays. The delays are believed to be a result of transcription, transcript splicing, transcript process-
ing, and protein synthesis. The delay differential equations for the so-called Hes1 model are:
Fig. 2.
10�1 w
dmðtÞ
dt

¼ amKðpðt � sdÞÞ � lmmðtÞ; ð12Þ

dpðtÞ
dt
¼ apHðt � sdÞmðtÞ � lppðtÞ; ð13Þ

KðpðtÞÞ ¼ 1

1þ pðtÞ
p0

� �h
; ð14Þ
where mðtÞ and pðtÞ are the mRNA and protein concentrations, respectively; lm and lp are the degradation rates of the
mRNA and protein, respectively; am is the rate of transcription initiation in the absence of the protein; ap is the rate at which
the Hes1 protein is produced Hð:Þ is the Heaviside function, which here has been added to the model of Monk in order to
initially inhibit the delays; Kð:Þ is the so-called Hill function with a Hill coefficient h; p0 is the initial value of the protein [20].

The discrete form of the delay differential equations are the following elementary reactions [3]:
; !bamKðPðt�sdÞÞM; ð15Þ

M!
lm ;; ð16Þ

; !
apMðtÞ

P; ð17Þ

P!
lp ;; ð18Þ
where M and P denote the mRNA and protein molecules, respectively, and b is a scaling parameter. The delayed reaction is
represented by Eq. (15). The initial condition is defined as, Xð0Þ ¼ ðMð0Þ; Pð0ÞÞ ¼ ð3b;100bÞ. The following parameters were
used in the simulations:
ðam;ap;lm;lp;h; sdÞ ¼ 1 min�1
;1 min�1

;0:029 min�1
; 0:031 min�1

;4:1;19:7 min
� �

; ð19Þ
and the simulation time was t 2 ½0;12 hÞ.

5.1.1. Performance
Fig. 2 shows the speed-up in running times compared with the treatment of the delayed reactions proposed in [16]. Sim-

ulations were performed by leaving b invariant and varying � (Fig. 2). The results indicate a substantial speed-up because the
delayed reactions need not always be distributed, and in the case that they are, efficient use of the binomial distribution is
employed instead of a uniform distribution. Specifically, large computational savings can be seen if the number of molecules
(b) is large, since, in effect, the number of delayed reactions that would be executed is also large.
Relative speed-up compared with the treatment of the delayed reactions in [16] for the Hes1 model. Logscale plot, where � is varied from 10�4 to
hile b ¼ 103.
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5.1.2. Validation
The accuracy of an approximate stochastic simulation algorithm can be evaluated by checking its convergence to a dif-

ferential equation as the number of molecules becomes larger, and by its statistical correctness with respect to the exact
SSA in the case of a small number of molecules.

In order to determine if the proposed algorithm converges to the delay differential equation, the parameter b was in-
creased by factors of 10. The resulting simulations were compared to a numerical integration of Eqs. (12) and (13) using
the DDE23 routine in Matlab 7.5.0 (R2007b). Fig. 3 shows the convergence of the protein concentration for three different
simulations, where b ¼ 102;103;104, and with an invariant � ¼ 0:005 that bound the relative change for each species [7]
using the R-Leaping [2] and s� Leaping [13] methods. As shown, the process converged to the differential equation as the
number of molecules was increased [15].

Simulations were also performed by prescribing b ¼ 10 and comparing the D-leaping algorithm to the exact, delayed SSA
[6]. Fig. 4 shows the mean of 103 runs for both methods as well as the standard deviation. The similarity reveals that the
accelerated, adaptive method preserves the correct statistical dynamics of the system.

Furthermore, s was plotted against the iteration number for the R-Leaping and s� Leaping methods. Fig. 5 shows that the
time-steps, and in effect the spans of the delayed reactions vary during the simulation. It should be noted that, since the
s� Leaping method does not sample the time-step, it does not produce a distribution in the y-axis as opposed to R-Leaping.

5.2. Delta notch 2-cell pathway

The Notch singalling pathway has been proposed as a mechanism by which oscillating gene expression of somatic cells
occurs during embryonic development (for example in zebrafish [17]). The her1 and her7 genes encode for gene regulatory
proteins, which are, in turn, regulated by another protein called the delta Notch protein. A 2-cell model proposed by Lewis in
[17] was simulated using D-leaping. The system consists of 3 mRNA and 3 protein species, denoted by the index l, and 2 adja-
cent cells, denoted by l. The indices i ¼ 1;2;3 correspond to her1, her7, and delta, respectively. In total, there are 12 species
subject to 24 reactions.
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synchronous osciallations (the her1 protein for both cells is show in Fig. 6). Asynchronous oscillations are the result of using
~sd, where the delta Notch species has a longer delay time. The results indicate that D-leaping reproduces the correct dynam-
ics of the system.

6. Conclusions

We presented D-leaping, a time-adaptive method for the accelerated simulation of stochastic processes with delays. The
method was shown to be as fast as existing works for certain benchmark problems and in certain cases orders of magnitude
more efficient. Furthermore, D-leaping does not introduce any additional errors in the accelerated stochastic simulation
when incorporating delayed reactions.

The accuracy of the method was verified by numerically showing convergence to the delay differential equation as the
number of molecules in the system is increased and by comparing the fluctuations in the system to those produced by
the exact, delayed SSA. The algorithm was also shown to be capable of simulating complex systems of delayed reactions,
i.e. the delta Notch signalling pathway. Additionally, the method is general in that it can be combined with different accel-
erated stochastic simulation algorithms.

The algorithm presented herein does not incorporate a specific change to the selection of the time-step for the leaping
methods. A simple modification might be to create an additional bound on the changes which the incoming delayed reac-
tions (Fig. 1(B)) would engender. For example, the bounds that Cao et al. [7] have proposed may provide a promising avenue
for this particular endeavour. Ongoing work aims to extend the present algorithm to spatially developing systems [21] with
multiresolution capabilities [4] with delays and in extending the recently proposed exact R-leaping algorithm [18] to sys-
tems with delays.
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